'Making High Performance
Computers Highly
Productive

Bill Carlson
IDA Center for Computing Sciences

Agenda

@ What's the state of high end computing?

@ Certainly not the best of times

@ What does "productivity” really mean?

@ Measurements?

@ A few ideas on a way forward

What's right

@ We are getting many, many more cycles

@ With respect to ops, Moore rules

@ Memory bandwidth is starting to improve
@ Cray X1, Alpha EV7, Opteron, Others

@ We are getting some new applications

@ But not enough

What's Wrong

@ Still no stable market

@ Programming time is increasing
@ No real solution for parallel programming
@ Decreasing Numbers:

o Users
@ Programmers

@ Institutions who care

Capability Profile

T

Capability

The Impact Zone

Observations and
Trends

@ Delay to impact zone is too long
@ And growing

@ Length of impact zone is short
@ Excitement wanes quickly

@ Depth of impact zone is shallow

Productivity Today

|deal

Application

Programming

HPC Programming 1980
HPC Programming Today

>
—
2
e
(S
-
O
o
S
a

O
"\J

Productivity

@ Make the impact zone sooner, longer, deeper

@ Economics 101: Output per unit of input

@ GDP per unit labor-hour
@ Qutput is not ops, but impact
@ Input is not just $, but human capital

@ Real output of HPC is Understanding
@ Need to find the GDP for our field!

Measuring is Hard

@ Programming time:

@ Usually measured in SLOC/time
@ This is good for project managers
@ Very BAD for trying to tune productivity

@ presumes constant level of abstraction

@ OK, measuring run time is "easy”
@ Interpretation tfime?

@ All DEPENDENT variables!

One Measurement Idea

- @ Computational Mass/Action (Bob Numrich)

@ Physics isomorphism:

@ work,distance,time -> ops, bits, hz

@ computational mass is derived: ops/(bit-hz)"2
@ Newton's Laws (and much of physics) can be used!

@ Programming and Interpretation Work

@ Code/Data represented has some mass

@ Force needed to move from "bad"” “location” to
“good"

@ Needs work, but hope for unification

A way forward

@ Scientific Productivity Stewardship?

@ Use science and engineering to guide us

@ Research: New ideas!
@ Vendors: Prototypes VERY Important!
@ Government: Getting it together
@ DARPA HPCS
o IHEC, NAS study, HEC/RTF

Some Initial Ideas

@ Abstraction

@ Type less, reuse more

@ Persistence

@ Data lives a long time, why not use it?

@ Diversity of Expression

@ No one right way to say everything

Abstraction

@ Not just about "object oriented” languages

@ Abstraction about parallelism (UPC)
@ Abstraction about functionality (MatLab)
@ Abstraction about data (Transactions)

@ Abstraction can't mean low performance!

@ Runtime a big component of productivity
@ Re-Use

NOT only software!

@ Architecture

@ More than "shared memory" or "message passing”

@ Hardware Assist

@ Better latency/bandwidth always needed
@ Content addressable memory?

Persistence

@ Some early experiments are encouraging
@ "Data Mining" and "Object Stores”

@ Databases integrated with simulations

@ Persistence as a parallel model

@ Transactions help tolerate both latency and
faults (both hardware and software)

Integration

@ Procedural programming

@ Tell the computer the order to execute

@ Much research on integration here (babel)

@ Declarative programming

o Tell the computer what you want (SQL)

@ Never work well together

An Example - "autosql”

@ Establish correlation between database
tables and data structures in memory.

@ "Queries" and "Updates" in database are now
automatic (Abstraction)

® Program can "live" forever (Presistence)

@ Automatic checkpoint and restore

@ Many instances leads to parallel program

@ Database could be integrated with program

autosql example

struct mine t {int a, time t b, double d);
struct auto _sql tbl { “select a,b from c”,
{ fa = A INT, A OFF (t,a)},
§ T A DATE, A OFF (t,b)}};

as = as_open (postgres:test);
dp = as _select (as, &tbl, “where d > %g”, 1.4);
if (dp) {

struct mine *t = dp->data;

for (i=0; i<dp->n; i++)
{
printf (”“a:%d b:%$s\n”, t->a, ctime(t->b));
t++;

Summary

@ High Performance computing is in trouble

Ideal

@ Not because of performance growth

@ Simply not "productive” enough

@ There is a way forward

@ Abstraction, Persistence, Integration

@ I, for one, will start this journey
@ Please join mel Q

